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A recently developed image-intensity-matching technique has been used to analyse images

of cement paste which were dried in an environmental scanning electron microscope.

Shrinkage that occurs during changes in relative humidity is reported, together with some of

the influences of water-to-cement ratio, temperature and age. Results from microstructurally

based models are compared with experimental results. The best fit of models to experiment

is achieved if calcium silicate hydrate (C—S—H) is divided into two types: high density C—S—H,

which does not shrink, and low density C—S—H, which does shrink. Approximate values of

unrestrained shrinkage of the low density C—S—H are attained as a function of relative

humidity.
1. Introduction
The reaction of ordinary portland cement (OPC) and
water produces cement paste, which composes the
matrix phase in concrete. From the millimetre to
meter length scale, concrete is a complex composite
composed of cement paste, various additives and ag-
gregates. However, on the micrometre length scale,
cement paste itself is a complex composite. Two im-
portant products in cement paste are calcium silicate
hydrate (C—S—H) and calcium hydroxide (CH)1.
C—S—H is nearly amorphous and has a variable com-
position. The atomic structure of C—S—H is not well
understood, but it is probably a layered material [1, 2]
which is an assemblage of imperfect tobermorite [3]
and possibly jennite [4], with a water content depen-
dent on the relative humidity of the local environment
[5]. Depending on the measurement technique used,
the surface area of C—S—H ranges between 200 and
600 m2 g~1 of D-dried C—S—H (C—S—H equilibrated
with ice at !79 °C) [1, 5]. In contrast with C—S—H,
CH has a fixed composition and the atomic structure
is known. Portland cement paste also contains various
other phases such as ettringite, ferrites and aluminates.

An important property of hardened cement paste is
drying shrinkage, the strain associated with loss of
water. Drying shrinkage has been explained by mech-
anisms that include capillary tension, changes in sur-
face energy, loss of interlayer water, and disjoining
pressure [6]. Most of the drying shrinkage occurs in
1In cement chemistry notation, C"CaO, S"SiO
2

and H"H
2
O.
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the C—S—H, while CH, anhydrous cement and aggreg-
ate all restrain shrinkage. Although the aluminate and
ferrite phases may shrink somewhat, they are gener-
ally only present in relatively small quantities and are
not considered in this paper.

One mechanism that causes shrinkage between 100
and 40% relative humidity is capillary stress, resulting
from menisci that form in the capillary pores upon
drying. As liquid evaporates, the tension in the menisci
is transferred to the pore walls, causing contraction
and resulting shrinkage [5, 7—11]. Also within this
relative humidity range, disjoining pressure may be
important [5, 7—9]. The mechanism of disjoining pres-
sure is defined the following way. In a saturated state,
a thick layer of water is adsorbed on the surfaces of
adjoining C—S—H particles, creating a repulsive force.
As the relative humidity is lowered, adsorbed water is
removed, causing the water layer to become thinner,
which results in shrinkage.

Gibbs—Bangham shrinkage operates at lower rela-
tive humidities (less than 40%) [5, 7—11]. Unsatisfied
surface bonds on the C—S—H layers cause a high sur-
face free energy, which in turn results in a high surface
tension. Adsorbed water molecules will decrease this
surface free energy. As the relative humidity is
lowered, these adsorbed water molecules leave, caus-
ing increased attraction between C—S—H particles,
and shrinkage. The maximum shrinkage occurs with
the removal of the last adsorbed water layer.
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A final mechanism, which operates at only the
lowest relative humidities (less than 11%), is the loss of
interlayer water [5, 7—11]. This is essentially the same
as disjoining pressure except that it occurs between
the layers of a single C—S—H particle, rather than
between C—S—H particles. As the adsorbed water is
removed, the C—S—H layers collapse, perhaps resulting
in irreversible shrinkage [2].

A distinction between real and apparent mecha-
nisms has been made [12]. Real mechanisms are asso-
ciated with the material properties of cement paste
and are independent of specimen geometry. Apparent
mechanisms are dependent upon specimen geometry.
For example, a moisture gradient across a thick
specimen may occur upon drying and the subsequent
differential shrinkage results in cracking, which alters
the bulk shrinkage response. Thus, in order to deter-
mine real mechanisms, specimens that do not have
stress gradients must be used. Measurements of real
shrinkage can be made by using extremely thin sam-
ples and/or lowering humidity so slowly that the
moisture gradient is minimized. Very thin samples are
often difficult to handle or are too small for measure-
ments to be attained. Lowering relative humidity
slowly can require an experiment time that is simply
too long.

Ideally, a real unrestrained shrinkage value for
C—S—H, as a function of relative humidity, could be
determined for use in recently developed computer-
based microstructural models that can be used for
predicting properties [13]. These models require unre-
strained shrinkage and elastic properties of each phase
as input. The unrestrained shrinkage value is the
strain that a pure phase will develop at a given relative
humidity. Values for most phases are available but
those for C—S—H are unknown. Larger-scale experi-
mental results can be compared with model results
only if specific drying shrinkage strain values for
C—S—H can be assigned. However, even for thin ce-
ment samples, measured shrinkage values are for
a complex composite of shrinking and restraining
phases. Unrestrained shrinkage of C—S—H can only be
measured on samples which do not contain other
phases such as CH, unreacted cement or porosity.
Therefore, unrestrained shrinkage of C—S—H can only
be measured on a tiny sample of material that is not
connected to any restraint. In cement, this requires
a region of C—S—H to be observed on the micrometre
scale, which has only distant connections to a restrain-
ing phase.

The results reported here are an attempt to probe
the unrestrained shrinkage of C—S—H. An environ-
mental scanning electron microscope and a new
image analysis technique were used to measure
drying shrinkage of very small specimens of hardened
cement paste in situ. Specimens were maintained in
an atmosphere containing water vapour at relative
humidities between 5 and 80% within the environ-
mental scan-ning electron microscope [14, 15]. In
conjunction with the microscope technique, an
image-intensity-matching technique (IIMT) [16] has
been developed to analyse deformation of the micro-
structure.
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Results of in situ measurements of displacements
during drying are reported and are discussed in
terms of possible shrinkage mechanisms. Some of the
values for shrinkage of the smallest particles may
approach values for unrestrained shrinkage. Reason-
able agreement is found between these values and
those required as input to microstructurally based
models for prediction of macrostrains. Initial results
are given for shrinkage of very small samples and
values that approach unrestrained shrinkage of
C—S—H.

2. Experimental techniques
2.1. Sample preparation
Pastes were made from a type I OPC. After cement
and deionized water were mixed by hand for 5 min
at various water-to-cement mass ratios, w/c, pastes
were cast in small cylinders, sealed, rotated for a
minimum of 4 h to avoid sedimentation and then
stored at 20 °C. After 24 h, the cylinders were demol-
ded and cured in a lime-saturated water bath
maintained at an appropriate temperature. The curing
temperature, w/c and age of the samples were varied.
The degree of hydration or percentage reacted was
determined for each paste using the loss-on-ignition
(LOI) technique.

2.2. Observations in the environmental
scanning electron microscope

As soon as the sample was placed in the environ-
mental scanning electron microscope, the chamber
was pumped to a relative humidity of 80% and held
for 10 min before the first image was taken. A fracture
flake approximately 1 cm2 in area and 1 mm thick was
used and, as far as was possible, reasonably flat re-
gions of the fracture surface were examined in each
experiment. The relative humidity was varied by
changing the chamber pressure, while the sample was
maintained at a temperature of 10 °C.

Images were taken at magnifications of 1000] and
5000], which allowed observation of a small area
containing a number of particles or a single hydrated
particle, respectively. Images taken at 1000] magnifi-
cation were used to study area shrinkage, an area
several hundred micrometres across which includes
restraining phases. Images taken at 5000] magnifica-
tion were used to study particle shrinkage, the shrink-
age of a single C—S—H particle, which should approach
the unrestrained shrinkage for this phase. The field of
view at 5000] magnification was approximately
20 lm wide. The single particle was chosen to be
a particle separated from the rest. Often this was
a particle sitting above the general fracture plane. At
each relative humidity, the sample was held for 10 min
before imaging. A typical sequence included images
obtained at 80%, 60%, 40%, 20% and 5% relative
humidity. The final image at 5% relative humidity
could not be obtained directly because the detector
requires a minimum gas pressure greater than that
present at 5% relative humidity in order to form
an image. This image was taken by momentarily



increasing the pressure to 20% relative humidity after
10 min at 5% relative humidity. All images were
512]512 pixels in size.

2.3. Image-intensity matching technique
Because the magnitude of shrinkage for cement
paste is relatively small, typically less than 1%,
deformation was not detectable by simple visual
comparison of environmental scanning electron
microscopy (ESEM) images. Even if transparencies
were overlaid, no displacements could be observed,
much less evaluated quantitatively. The IIMT takes
two images as input and computes the magnitude of
deformations at various locations in the image. The
results reported here represent the first use of the
IIMT.

The methodology for IIMT computation is as fol-
lows. Two images are required: a reference image,
taken prior to deformation, and a deformed image,
in which drying shrinkage has occurred. In this
study, the reference image was taken at 80% relative
humidity; any shrinkage taking place between
100% and 80% relative humidity was ignored. The
deformed images were those taken at relative humidi-
ties lower than 80%. From the deformed image,
a pixel of interest is chosen and a 20 pixel square
window, called the search window, is centred at that
pixel. A large reference window, 40 pixels square, is
centred at the same location in the reference image. In
order to remove as much variation in contrast as
possible, the intensities of these two windows are
modified to a distribution with mean of zero and
standard deviation of 1. This technique removes most
of the variation in contrast and brightness between
images, then, the search window is systematically
moved and distorted over the reference window. For
each incremental distortion, one image is subtracted
from the other until a minimum mean square error
criterion is satisfied.

In simple terms, this technique finds the deforma-
tions of the search window which minimize the differ-
ence between the intensity surfaces of this window and
the reference window. The deformation required to
realign the deformed image to the reference image is
equal and opposite to the deformation experienced
during drying. The algorithm is capable of evaluating
igid-body translation, expansion or contraction, and
shear.

An important ramification of this technique is that
subpixel deformations are determined. This occurs
because the comparison of two windows is not based
solely on discrete pixels but instead interpolates be-
tween pixels and is, in effect, a comparison between
two intensity surfaces. Because surfaces are being
mapped, no sharp edges are required. The only re-
quirement is that the region of interest, or window, has
a non-uniform pattern of grey levels [16]. One way of
testing the resolution of IIMT is to artificially shift
a computer-generated image and then to have the
computer measure this shift. This test indicates that
the IIMT has a practical resolution of approximately
0.2 pixels [16].
All shrinkage measurements reported here were
calculated by comparing the length between two
widely spaced points (N+200 pixels apart) at a speci-
fic relative humidity (60% or less) to the reference
length in the image taken at 80% relative humidity.
Each shrinkage measurement is the average of six
separate measurements involving many points on dif-
ferent parts of the sample. Typical scatter due to
variation in samples was about 20% of the measured
strain.

2.3.1. Effect of scale on the image-intensity-
matching technique

The effect of scale on the resolution of the IIMT is
an important consideration. A simple mathematical
proof will show that magnification has no effect on the
analyses in this paper provided that the specific points
of interest are spaced adequately.

Consider two points of interest separated by a line
which is N pixels long, where each pixel has length a,
so that the initial length of this line is Na. However,
there is some inherent error in the digitization of the
image, since only the predominant grey level in each
pixel is assigned. Therefore, as shown in Fig. 1,
features (grey region) which slightly overlap
adjoining pixels are considered the same as features
which do not entirely fill their own pixels. This error is
of the order of $0.5 pixels, so accounting for this
on both ends of the line gives an initial measured
length ¸

*
of

¸
*
" Na$a " a(N$1) (1)

Now displace the points of interest so that the line is
strained by 10%, or 0.1Na. Using the IIMT to deter-
mine those displacements introduces an error of $0.2
pixels ($0.2a) at both ends of the line. Again, ac-
counting for the initial digitization error and summing
gives a final measured length of

¸
&
" Na#0.1Na$0.4a$a " a(1.1N$1.4)

(2)

Using the fundamental definition for engineering
strain [17] given by

e
E

"

dl

l
0

(3)

and using Equations 1 and 2 in Equation 3 gives

e
E

"

¸
&
!¸

*
¸
*

"

a (1.1N$1.4)!a(N$1)

a (N$1)

"

0.1N$2.4

N$1
(4)

Thus, in considering widely separated points in which
N+200, which is applicable for the strains calculated
in this paper, Equation 4 reduces to

e
E

+ 0.1 (5)

with an error in the strain of approximately 2.4/N or
1%.
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Figure 1 Illustration of digitization process: (a) feature of interest
overlaps adjoining pixel; (b) feature of interest does not fill primary
pixel; (c) digitized image for both (a) and (b).

Now increase the magnification by a factor of 20
so that the same line is now initially 20N pixels
long, strain it by 10% and recalculate Equations 1, 2,
4 and 5:

¸
*
" 20Na$a " a(20N$1) (6)

¸
&
" 20Na#2Na$0.4a$a

" a (22N$1.4) (7)

e
E

"

¸
&
!¸

*
¸
*

"

a(22N$1.4)!a(20N$1)

a (20N$1)

"

2N$2.4

20N$1
(8)

e
E

+ 0.1 (9)

with an error in the strain of approximately 2.4/20N
or 0.06% when N+200. As is evident from Equations
5 and 9, the analysis is both accurate and unaffected
by magnification for widely spaced points.

2.3.2. Three-dimensional versus
two-dimensional considerations

Another point of concern in the IIMT is the use of
two-dimensional (2D) images to represent the three-
dimensional (3D) mechanisms occurring during defor-
6418
mation. As stated previously, the samples used were
flakes, approximately 1 mm thick, and about 1 cm2 in
area. These are definitely 3D samples and were ap-
proximately unrestrained in all three dimensions. The
shape of the samples implies that, if we were to think
of them as 2D samples, we should use the plane-stress
hypothesis, which is more applicable to thin samples
[18]. The IIMT simply measures the shrinkage strain
in two dimensions only. For an isotropic sample, the
shrinkage strains are the same in every direction, so
that those measured in the plane are valid 3D strains.
For macroscopic samples, such as a bar of cement
paste, one typically measures length changes in only
one dimension and makes the assumption of sample
isotropy, just as the IIMT does.

Is cement homogeneous and isotropic on the scale
on which it was observed by ESEM? Yes, but only in
the sense of a statistical average. Many points must be
measured and averaged in order to obtain a meaning-
ful result, as has been done in this paper.

An examination of the physical situation being
studied also confirms the applicability of this tech-
nique. Take, for example, the C—S—H layers in a single
C—S—H particle such as that shown in Fig. 2a. The
outer circle (labelled Before shrinkage) indicates the
outer limits of the C—S—H in a wet state; the inner
circle (labelled After shrinkage) indicates the new
C—S—H limit as drying shrinkage occurs. On the as-
sumption that this shrinkage is homogeneous and
isotropic, a pair of similar triangles may be drawn
from the centre of the C

3
S particle to any point on its

outer edge, as shown in Fig. 2b. For similar triangles,
it is known that

l
1
l
2

"

x
1

x
2

(10)

indicating that the projection of the outer radius (the
x values) will scale directly with the change in length of
the outer radius (the l values). More explicitly, the
strain along the l direction is given by

e
l
"
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1

(11)

Similarly, the strain along the x direction is given by
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1
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Rearranging Equation 10 and substituting into Equa-
tion 12 give
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Thus, the strain along the x direction is identical to
that in the l direction.

Two problems may be anticipated in this approach.
First, there is an obvious singularity directly perpen-
dicular to the fracture plane. For example, if z

1
or z

2
is

taken so that it is drawn straight up from the centre of
the particle, as shown in Fig. 2c, shrinkage will occur



Figure 2 Consideration of 2D versus 3D effects: (a) example of
particle on surface showing outer radius of surrounding C—S—H
before and after shrinkage (dark grey, C

3
S; light grey, C—S—H);

(b) similar triangles created by shrinkage shown in (a); (c) repres-
entation of singularity for points lying directly above the centre of
the particle.

in the z direction and will not be evident to the IIMT,
which measures only x and y displacements. This is
unavoidable, but for each particle it should only occur
once. Thus, this situation applies to very few points in
a large field and so does not significantly affect the
analysis. Second, what if the layers rearrange or move
without shrinking? This is possible, but highly unlike-
ly, except on a very small scale owing to the densely
layered nature of C—S—H [1, 2]. The interlayer distan-
ces in C—S—H are on the nanometre scale, providing
very little room for movement of a single layer. It is
comparable with moving one page in a closed book.
Thus, any 2D versus 3D conflicts which will occur
because of use of the IIMT algorithm will be minimal
and have no significant effect on the validity of the
data reported in this paper.

3. Experimental results
The values presented are from samples which, to our
knowledge, are the smallest specimens to date on
which shrinkage has been measured directly. This
paper, therefore, reports results that we believe pro-
vide better values than can be attained by other tech-
niques, but they are still approximations to a truly
unrestrained specimen.
Figure 3 Typical cement paste images for determination of (a) area
and (b) particle shrinkages.

Fig. 3 shows typical area and particle regions as
defined in Section 2.2 previously. Fig. 3a shows an
area approximately 100 lm across, including pores,
and Fig. 3b shows a single particle that appears to be
relatively detached from the rest of the matrix. Here,
the region analysed is only this particle. Results of
strain analysis for a variety of samples are shown in
Figs 4—6.

3.1. Effects of age
Fig. 4a and b show area and particle shrinkage
values, respectively, for 7, 14 and 28 day old cement
samples with w/c"0.5 cured at 20 °C. The area
shrinkage and the particle shrinkage decrease with
increasing age of the specimen. Area shrinkage is sig-
nificantly smaller than the particle shrinkage at all
ages, because of the presence of the restraining phases
in the cement paste that reduce how much the C—S—H
can shrink.

At intermediate humidities (40—80%), both area
shrinkage and particle shrinkage at early ages are
relatively large but, at later ages, these values are
significantly lower. This suggests that the stresses as-
sociated with capillary tension, which is the predomi-
nant mechanism at intermediate relative humidities
[6], have a decreasing effect on shrinkage at later ages.
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Figure 4 (a) Area, and (b) particle shrinkages at various ages for
a cement paste of w/c"0.5 cured at 20 °C. (d), 7 days; (j), 14 days;
(m), 28 days.

This is probably a combination of two different mech-
anisms:

1. The pore space decreases as the pores fill with
hydration product. Less pore space means that fewer
menisci can form, with less water having a high capil-
lary tension, which should result in lower overall
shrinkage strains.

2. As time passes, C—S—H ages and becomes stron-
ger and, therefore, shrinks less in an unrestrained (par-
ticle) condition, as discussed by Bazant [19]. The
overall modulus of the paste also increases with age,
owing to hydration, and so the stiffer paste will shrink
less under the same stresses.

At low humidities, particle shrinkage is similar for
different ages while area shrinkage shows large differ-
ences. The particle shrinkage values are probably due
to water loss in the interlayer spaces and changes in
surface energy which pull C—S—H particles together.
Because the values are similar, it suggests that these
mechanisms for shrinkage at low relative humidities
6420
are unchanged with age. Thus, the large differences in
area shrinkage are due to the arrangement and
volume fractions of shrinking and non-shrinking
phases, and the amount of capillary porosity, which
changes with age. Again, the overall stiffness of cement
paste increases with time, which would tend to de-
crease the area shrinkage.

3.2. Effects of w/c
Fig. 5a and b compare the area and particle shrink-
ages, respectively, for 28-day-old samples of cement
pastes cured at 20 °C, with four different w/c ratios. In
general, higher w/c ratios produce higher area and
particle shrinkages. This is not surprising, as higher
w/c values provide more porosity, resulting in a more
open microstructure. Area shrinkage values are
increased at intermediate humidities owing to the
increased capillary porosity that reduces the stiffness
of the cement paste, allowing capillary tension to be
more effective in causing shrinkage.

Figure 5 (a) Area, and (b) particle shrinkages at various w/c for
28-day-old cement paste cured at 20 °C. (d), w/c"0.3; (j),
w/c"0.4; (m), w/c"0.5; (.), w/c"0.6.



Particle shrinkage values are similarly higher for
higher w/c ratios, again owing to the increased poros-
ity. It is interesting to note that, for w/c"0.6, the
particle shrinkage at 5% relative humidity is signifi-
cantly higher than for the other w/c values, suggesting
a fundamental change in the mechanisms operating in
the low humidity range. It is possible that the in-
creased porosity makes removal of the adsorbed and
interlayer water much easier, accounting for this re-
sult. Models of cement paste predict that, for
w/c*0.6, the capillary porosity is always percolated
and therefore open for water transport [20]. However,
because of the necessity of increasing the relative hu-
midity to 20% before taking these images, it is impos-
sible to draw definitive conclusions from the 5%
relative humidity data.

3.3. Effects of curing temperature
As shown in Fig. 6a and b for samples with w/c"0.5
at 28 days of age, shrinkage of both areas and particles

Figure 6 (a) Area, and (b) particle shrinkages at various curing
temperatures for 28-day-old cement paste of w/c"0.5. (d), 20 °C;
(j), 30 °C; (m), 40 °C.
is reduced by curing at higher temperatures. However,
there was only a small influence of temperature on the
degree of reaction obtained at 28 days, as LOI ob-
tained results of 83.2%, 84.8% and 85.4% reacted
when cured at 20 °C, 30 °C and 40 °C, respectively.
Even though higher temperatures do accelerate ce-
ment hydration, 28 days was a sufficiently long period
of time for even the cement paste at the lowest curing
temperature to achieve nearly full hydration. That
higher curing temperatures, at equal degrees of hy-
dration, should produce lower shrinkage is surprising,
as it has been found that a greater volume and coarser
distribution of capillary porosity is produced at higher
curing temperatures [21]. However, this same work
also found that surface area (measured by water) was
decreased by higher curing temperatures. Thus, since
many of the shrinkage mechanisms are surface area
related, this could account for these results. The
shrinkage at low relative humidities, paste the capil-
lary condensation point, is proportional to the surface
area of the regions which have an adsorbed water film
[22]. Higher temperatures should also increase silicon
diffusion rates, allowing for increased silicate poly-
merization [23—25]. This would imply higher C—S—H
moduli and different C—S—H layer structures, which
may also account for a change in shrinkage mecha-
nisms and a reduction in shrinkage.

4. Comparison with models of shrinkage
4.1. Hydration model
In order to interpret our experimental results of the
shrinkage of C—S—H in small areas or single particles,
two modifications have been made to the basic 3D
hydration model developed by Bentz and Garboczi
[26]. Their model uses the algorithm that a hydrating
C

3
S grain produces 1.71 pixels of C—S—H and 0.61

pixels of CH, where a pixel usually has an edge length
of 1 lm. One C—S—H pixel is placed in close proximity
to the C

3
S pixel from which it was generated, while the

additional 0.71 pixel of C—S—H and 0.61 pixel of CH
are placed randomly within the available pore volume.
The first modification allowed the additional C—S—H
to form only within a cube with sides of 11 pixels,
centred on the dissolving C

3
S pixel. This resulted in

C—S—H that formed close to its hydrating C
3
S source

particle in the model. CH was still placed randomly
within the entire pore volume.

A second modification used for the simulations sep-
arated the C—S—H into two types with different densit-
ies. Jennings and Tennis [27, 28] have noted that
C—S—H can be divided into two subsets, one having
a much higher density than the other. The high-den-
sity C—S—H is sometimes described as phenograins
[29] or inner product, the C—S—H gel which forms
within or near the boundary of the original C—S—H
particle. However, because phenograins may include
CH, clinker and other dense parts of the microstruc-
ture, and because the inner product is not always
dense, the label HD C—S—H is used here. For similar
reasons, the low-density C—S—H, sometimes described
as ground mass [29] or outer product, which is a more
open and less dense structure that forms in the pore
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TABLE I Volume ratio, »
3!5*0

, LD C—S—H to total C—S—H ratio of the volume, »
LD C—S—H, LD C—S—H, and appropriate conversion data for

the basic hydration model

w/c »
3!5*0

(%) c x (%) Type of conversion

Basic model 41.5 0.71
0.3 34.3 0.52 12.38 LD C—S—HPHD C—S—H
0.4 41.3 0.70 0 None
0.5 48.4 0.94 11.76 HD C—S—HPLD C—S—H
0.6 55.5 1.25 23.84 HD C—S—HPLD C—S—H
space outside the original C
3
S grain, will be referred to

as LD C—S—H. In order to estimate the amounts of LD
C—S—H and HD C—S—H, the model of Jennings and
Tennis [27, 28] was used. In that model, it was as-
sumed that the nitrogen-accessible C—S—H was the
low-density product and that the nitrogen-inaccess-
ible C—S—H was the high-density product. The ratio,
»

3!5*0
, of the volume, »LD C—S—H, of nitrogen-accessible

C—S—H to the volume, »C—S—H, of total C—S—H in-
creases with increasing w/c ratio according to

»
3!5*0

"

»LD C—S—H

»C—S—H

" 0.706
w

c
#0.131 (14)

Values for »
3!5*0

as predicted by Equation 14 were
determined for a range of w/c values and are shown in
Table I. Also shown in Table I are the ratio of LD
C—S—H to HD C—S—H which have been calculated
through

»C—S—H " »LD C—S—H#»HD C—S—H (15)

Rearranging Equation 15 and dividing Equation 14
by the rearranged Equation 15 determines the ratio of
LD C—S—H to HD C—S—H, hereafter referred to as c:

c "

»LD C—S—H

»HD C—S—H

"

0.706w/c#0.131

0.869!0.706w/c
(16)

These data can be compared with similar ratios for the
basic hydration model described above where the
C—S—H pixel generated in close proximity to the C

3
S

grain from which it was generated is defined as high-
density product, and the additional 0.71 pixels of
C—S—H defined as low-density product. Thus, the
basic hydration model has a constant value of 0.71
for c.

In order to account for changes in »
3!5*0

and c for
various w/c ratios in the hydration model, it becomes
necessary to convert C—S—H from one type to another.
Observation of Table I shows that for w/c"0.3, it is
necessary to convert some LD C—S—H into HD
C—S—H and that, for w/c"0.5 or w/c"0.6, conver-
sion from HD C—S—H to LD C—S—H is necessary. At
w/c"0.4, the basic hydration model is satisfactory in
its distribution. Taking x as the fraction of C—S—H
that must be converted, for w/c"0.3,

c "

0.71!x

1#x
Px "

0.71!c

1#c
(17)

is applicable and for w/c"0.5 or 0.6,

c "

0.71#x

1!x
Px "

c!0.71

1#c
(18)
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TABLE II C
3
S particle size distribution for hydration simulation

[30]

Diameter (lm) Distribution (vol %)

19 21
17 4
15 9
13 9
11 9
9 11
7 9
5 10
3 10
1 8

is applicable. Calculated values for x and the appro-
priate kind of conversion are also shown in Table I for
the different w/c ratios. These conversions were intro-
duced into the pixel model by assigning an appropri-
ate chance for conversion, x, from one type of C—S—H
to the other type to each C—S—H pixel generated. This
modified pixel model was then used to simulate micro-
structures for various w/c ratios and degrees of hy-
dration. A 2563 pixel system was used together with
the particle size distribution for C

3
S grains listed in

Table II [30]. The possible effect of different cement
particle size distributions and degrees of flocculation
were not considered in this study.

4.2. Shrinkage model
Following hydration, ten slices were cut from each of
the model microstructures and drying shrinkage was
modelled using a finite-element model, which has been
described in detail elsewhere [13, 31]. Each pixel is
treated as a simple bilinear finite element, with the
finite-element nodes of the problem located at the
pixel corners. The moduli of each pixel are defined by
its phase label. Each phase is assigned values of
Young’s modulus, Poisson’s ratio and unrestrained
shrinkage strain parameter, e

*
. In order to compute

the shrinkage, the size of the system, in addition to the
nodal displacements, is treated as a dynamic variable
and so is allowed to vary in order to mininize the
elastic energy. Each phase has a certain unrestrained
shrinkage (particle shrinkage) which competes with
the rigidity of the rest of the system to produce an
overall shrinkage (area shrinkage). When the elastic
strain energy is minimized, the average stress is zero,
but the individual stresses in each pixel are generally
non-zero. The overall composite shrinkage, e*, and



the nodal displacements are reported by the program.
Only reversible linear elastic shrinkage is considered.

4.2.1. Three-dimensional versus
two-dimensional considerations

Using a 2D model to study the measured 3D strains
does introduce some error due to several assumptions
made in the modelling process. The first assumption is
that the 3D cement paste microstructural model does
a good job of reproducing the 3D microstructure.
Then, by taking 2D slices of this model, converting the
moduli of each phase to its 2D plane-stress equivalent,
and then putting in an intrinsic shrinkage for the
C—S—H, the overall effective sample shrinkage is com-
puted. The second assumption is then that this is
equivalent to running the full elastic analysis on the
3D model. This is not correct in general but, as we
shall see, is a reasonably good approximation.

Two exact examples will suffice to illustrate this
point. The first is the equal shear modulus case. For
any two-phase microstructure, with volume fractions,
c
1

and c
2
, if each phase is elastically isotropic and the

shear moduli in both phases are equal, then the effec-
tive bulk and shear modulus of the system can be
found exactly. A slice will give another randomly
chosen microstructure, with area fractions equal to the
volume fractions of the original, whose moduli can
again be found exactly. The effective shear modulus is
just the equal shear moduli of the phases, while the
bulk modulus is given by [32, 33]

K "

4
3
G(c

1
K

1
#c

2
K

2
)#K

1
K

2
4
3
G#c

1
K

2
#c

1
K

1

for three dimensions (19)

and

K "

G(c
1
K

1
#c

2
K

2
)#K

1
K

2
G#c

1
K

2
#c

2
K

1

for two dimensions (20)

The second example is that of a dilute suspension of
spherically shaped inclusions in a matrix, with all
materials elastically isotropic. The spheres can have
any size distribution. Taking a slice of this system will
produce a suspension of circular shaped inclusions,
with a different size distribution, but with area frac-
tions equal to the volume fractions of the original
system. If phase 1 is the matrix, and phase 2 is the
inclusions, then the bulk modulus of the system is
[33, 34]

1

K
"

1

K
1

#

c
2
(1/K

2
!1/K

1
)(1/K

1
#3

4
G)

1/K
2
#3

4
G

for three dimensions (21)

and

1

K
"

1

K
1

#

c
2
(1/K

2
!1/K

1
)(1/K

1
#1/G)

1/K
2
#1/G

for two dimensions (22)
For two-phase systems, with an intrinsic shrinkage
(or thermal strain) of a

*
in each phase, the effective

composite shrinkage is given exactly, in two or three
dimensions, by the Rosen—Hashin [35] equation

a " c
1
a#c

2
a
2
#

a
2
!a

1
1/K

2
!1/K

1
A

1

K
!

c
1

K
1

!

c
2

K
2
B

(23)

where c
*
is a volume fraction or an area fraction.

Therefore, to illustrate the comparison between two
and three dimensions, we first choose values of K

1
,

K
2
, G

1
, G

2
, a

1
and a

2
in three dimensions. These are

inserted into the equations for the 3D effective bulk
modulus, and then into the Rosen—Hashin equation to
get the effective overall shrinkage. These phase moduli
are then converted to their plane stress equivalents,
inserted into the expressions for the 2D effective bulk
modulus, and then inserted into the Rosen—Hashin
equation to get the effective 2D shrinkage. The exact
effective shrinkage values in two and three-dimensions
are then compared.

For the equal shear modulus case, take K
1
"1,

G
1
"G

2
"1 and a

2
"0, with c

1
"c

2
"0.5. The

value of a
1

is arbitrary, and K
2

is taken over a range
from 1 to 100. Results are presented in terms of a/a

1
;

so, when K
2
"K

1
"1, the value of a/a

1
is exactly

c
1

or 0.5 since, when the two phases have the same
moduli, the shrinkage is exactly given by
a"c

1
a
1
#c

2
a
2
, which is Vegard’s law.

For the dilute spherical inclusion microstructure,
K

1
"1, G

1
"1 and K

2
/K

1
"G

2
/G

1
so that the

phases have the same Poisson’s ratio [36], and a
2
"0,

with c
2

arbitrary. In this case, the spherical inclusions
can be thought of as a restraining phase. The effective
shrinkage can be written as

a " a
1
(1!fc

2
) (24)

with the coefficients f
2D

and f
3D

determining the
shrinkage response. In the limit of equal moduli in
each phase, both f

2D
and f

3D
reduce to 1.

Fig. 7a and b shows the parameters for the two
exact examples. The 2D and 3D parameters are equal
in the uniform material case, which is not surprising,
but become increasingly different as the bulk moduli
become farther apart. However, the difference is not
that great, lending support to the possibility of using
a 2D model to interpret the 3D measurements. In Fig.
7a and b, the region of interest is probably where
K

2
/K

1
is of the order of 50 or more, since the moduli

of cement are around 50 or so times those for C—S—H
(see next section).

A numerical example which elucidates this differ-
ence between two and three dimensions more exactly
for the cement paste system of interest uses the full 3D
model microstructure. The 3D version of the shrink-
age code has only recently been developed [31]. A ce-
ment paste microstructure was created, elastic moduli
as described in the next section were assigned to the
phases, and an intrinsic shrinkage of 0.01 was assigned
to the entire C—S—H phase. The same thing was done
for five slices, but with phase moduli replaced by their
plane-stress equivalents. w/c ratios of 0.3, 0.4, 0.5 and
6423



Figure 7 Comparison of parameters for exact examples. (a) Effec-
tive shrinkages, a/a

1
for equal shear moduli example. (——), three

dimensions; ( — — — ), two dimensions. (b) Shrinkage coefficients f
2D

( — — — ) and f
3D

(——) for dilute limit of spherical inclusions.

0.6 were used, at about 65% hydration. Table III
shows the results. For w/c values between 0.3 and 0.5,
the average effective shrinkage as computed on the
slices tends to be about 20% higher in magnitude than
the 3D shrinkages. The reverse was found for
w/c"0.6.

It is obvious that the 2D representation is not
perfect in its description of the 3D shrinkage being
experimentally measured. However, the authors be-
lieve that these models can provide valuable insights
into the shrinkage behaviour of cement pastes and
are justified in their presentation. Further analyses
using the 3D code are necessary to increase the accu-
racy of these results but at present are limited by the
long run times necessary to analyse many systems,
even with a small system approximately 1003 pixels
in size. Larger systems than this in three dimensions
take impractically long run times to analyse, so that
the resolution available for 3D analysis is limited.
6424
TABLE III Comparison of normalized effective shrinkages pre-
dicted by 2D and 3D models for various w/c cement paste models

w/c Effective shrinkage/intrinsic
shrinkage of C—S—H

3D 2D

0.3 0.28 0.38
0.4 0.32 0.4
0.5 0.34 0.37
0.6 0.37 0.28

As the computing power barrier is removed, this issue
will be explored in more depth.

4.2.2. Approximation of C—S—H
elastic moduli

The values of Young’s modulus, Poisson’s ratio and
unrestrained shrinkage for each phase in the model
microstructure are shown in Table IV. Vernet [37] has
determined values of E

C3S
"117.70 GPa and m

C3S
"

0.31 for C
3
S or, equivalently, K

C3S
"103.25 GPa and

G
C3S

"44.92 GPa via [17]

K "

E

3(1!2m)
(25)

G "

E

2(1#m)
(26)

Values from Monteiro and Chang [38] were used for
the Young’s modulus and Poisson’s ratio of CH; their
work gave values of E

CH
"43 GPa and m

CH
"0.32,

which results in K
CH

"39.8 GPa and G
CH

"

16.3 GPa. Pores were given values of zero for Young’s
modulus and Poisson’s ratio. All three of these phases
were assumed to be non-shrinking. While this may
seem inaccurate in the case of pores where capillary
stress occurs, the actual displacement occurs in the
C—S—H layers; therefore, any shrinkage arising from
capillary stress is assigned to the intrinsic shrinkage
strain of C—S—H.

Since no data exist on the elastic properties of the
C—S—H phase, it was necessary to approximate these
values from available data. Helmuth and Turk [39]
measured the values of Young’s modulus and Pois-
son’s ratio for cement and C

3
S pastes as a function of

capillary porosity. For C
3
S pastes, extrapolation to

zero capillary porosity produced values of E
'%-

"

4.69 GPa and m
'%-

"0.25 for the gel, where in the
notation of Helmuth and Turk this was a solid mix-
ture consisting of CH and C—S—H. This gives K

'%-
"

3.13 GPa and G
'%-

"1.88 GPa.

TABLE IV Elastic moduli used in shrinkage simulations

Phase E m e
*

Reference
(GPa)

C
3
S 117.70 0.31 0 [37]

CH 43.00 0.32 0 [38]
C—S—H 2.60 0.26 Varies
Pore 0 0 0



It is now necessary to divide the gel into CH and
C—S—H. As mentioned previously, the hydration
model produces 1.71 pixels of C—S—H for each 0.61
pixels of CH produced. This results in relative volume
fractions of v

CH
"26.3% and vC—S—H"73.7%, where

v
CH

and vC—S—H are the volume fractions of CH and
C—S—H, respectively.

To calculate elastic values for C—S—H, the gel was
treated as a composite consisting of CH and C—S—H.
A 3D effective medium theory for spherical inclusions
developed by Berryman [40] was used. It is obviously
unrealistic to consider CH crystals as spherical, but it
offers a first approximation for the elastic moduli of
the C—S—H. The following equations were solved nu-
merically to calculate values for the bulk and shear
modulus of C—S—H:

1

K*#4
3
G*

"

n
+
i/1

v
i

K
i
#4

3
G*

(27)

1

G*#F*
"

n
+
i/1

v
i

G
i
#F*

(28)

F* "

G*

6

9K*#8G*

K*#2G*
(29)

where K* and G* are the bulk and shear moduli,
respectively, of the composite, in this case the hy-
dration gel, v

i
, K

i
and G

i
are the volume fraction, bulk

and shear moduli, respectively, of each phase, and
n"2. Using this technique, values of
KC—S—H solid"1.80 GPa and GC—S—H solid"1.03 GPa
were calculated, giving EC—S—H solid"2.60 GPa and
mC—S—H solid"0.26 via Equations 25 and 26.

4.2.3. Shrinkage simulations
A range of values for intrinsic (particle) shrinkage was
used to predict values of effective (area) shrinkage.
Two sets of simulations were run. In both sets, the
same values of elastic moduli were used for both LD
C—S—H and HD C—S—H as determined above. In the
first set, all the C—S—H was assumed to be a shrinking
phase. Unrestrained shrinkages of !5% and !1%
were used for C—S—H to determine composite shrink-
age. In the second set of simulations, LD C—S—H and
HD C—S—H were treated separately. Only the LD
C—S—H was allowed to shrink, again using values of
!5% and !1% for the unrestrained shrinkage of
LD C—S—H. The differences in the distribution of
shrinking phase caused by these two contrasting simu-
lations are shown in Fig. 8a and b. Fig. 8a shows all
the C—S—H phase in white, while Fig. 8b shows only
the LD C—S—H product, as determined by the micro-
structure model, in white.

It may seem odd to consider a situation in which
only the LD C—S—H shrinks. Consider, however, the
physical distribution of the phases. To a first approxi-
mation, a hydrated C

3
S (or cement) particle may be

considered as a series of three spheres centered on the
same point. In the interior is the unhydrated material,
surrounded by a shell of HD C—S—H, which is in turn
surrounded by a shell of LD C—S—H. Only the LD
C—S—H is in contact with the capillary porosity, the
Figure 8 Distribution of shrinking phase for (a) all C—S—H shrink-
ing and (b) only LD C—S—H shrinking. White, shrinking phase;
black, non-shrinking phase.

pathways by which most moisture removal will occur.
It would follow that during drying the LD C—S—H will
lose its moisture earlier and to a much greater degree
than the HD C—S—H. If the removal of this moisture
causes C—S—H layer collapse, as has been proposed by
Feldman and Sereda [2], this may limit moisture
removal from the HD C—S—H, causing little to no
shrinkage in this phase. It would then be natural to
model the C—S—H as having shrinkage properties only
in the less dense region. This argument from the topol-
ogy of the C—S—H surrounding a cement grain implies
that there could be shrinkage differences between the
low-density and high-density products even if there
were no compositional differences.

As noted above, one output from the model is
a composite shrinkage value, e*. This composite
shrinkage value can be compared directly with the
area shrinkage measured by ESEM. Because C—S—H
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is considered to be the only shrinking phase, it is then
possible, in the model, to vary the value of the intrinsic
shrinkage, eC—S—H, of C—S—H so as to match the model’s
composite shrinkage value to the experimentally
measured area shrinkage. This value for the intrinsic
shrinkage of C—S—H, determined in the model, can
then be compared with the experimentally measured
particle shrinkage values, which approach the true
intrinsic shrinkage values of the C—S—H. In this way,
the experimentally measured area shrinkage values
are used to calibrate the model parameters for intrin-
sic shrinkage.

Comparison of the modelling results for intrinsic
shrinkage with the experimentally measured particle
shrinkage show reasonable agreement over the entire
relative humidity scale when only the LC C—S—H is
allowed to shrink. However, if composite shrinkage is
modelled with all the C—S—H shrinking, then the value
determined in the model for intrinsic shrinkage does
not agree with the experimentally measured value for
particle shrinkage. Fig. 9 shows typical results for
a system with w/c"0.3 and degree of hydration of
66%. It is clear that the model values for intrinsic
shrinkage, when only LD C—S—H shrinks, follow the
same trend and are much closer in magnitude to the
experimentally measured values than those model
values determined in the case when all the C—S—H
phase is allowed to shrink. A noticeable deviation
from the model trends occurs after equilibration at
5% relative humidity. As noted previously, the necess-
ity of raising the relative humidity to 20% before
imaging at this point makes results at 5% relative
humidity the most uncertain of all the data.

It is interesting to note that the model values with
only the LD C—S—H shrinking are slightly larger than
the experimentally measured values for the intrinsic
shrinkage of C—S—H. It is possible that, even in the
small-scale particle studies presented in this paper, the
restraining effect of the matrix limits the particle
shrinkage somewhat. This effect would cause the
measured particle shrinkages to be less than the true
intrinsic shrinkage of C—S—H. Since there is always
some restraint present, it is true in general that the
particle shrinkage will always be somewhat less than
the true intrinsic shrinkage. This suggests that it is
very difficult to measure experimentally intrinsic
shrinkage of C—S—H and that only through the combi-
nation of experiment and modelling will the true in-
trinsic shrinkage of C—S—H be resolved.

The above effect is probably more pronounced than
is shown in Fig. 9, because of the 2D versus 3D
comparison previously considered. For w/c"0.30,
the 2D version of the model gave a higher composite
shrinkage than did the 3D version, for the same intrin-
sic shrinkage. This suggests that, if the 3D code was
used for all this work, a higher value of C—S—H intrin-
sic shrinkage would have been needed in the model in
order to be able to match the experimental area
shrinkage measurement, probably of the order of
about 25% higher. This would increase the discrep-
ancy between the measured particle shrinkage and the
fitted intrinsic model shrinkage. There were also cer-
tainly viscoelastic effects in the experiment, which
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Figure 9 Comparison of intrinsic (particle) shrinkage results be-
tween experimentally measured values (d) and model results ((j),
all C—S—H shrinking; (m), outer C—S—H shrinking) for a system of
w/c"0.3 and degree of hydration of 66%.

would give more apparent shrinkage strain for the
same elastic intrinsic shrinkage. Matching these values
with a purely linear elastic model would also then tend
to give too high model intrinsic shrinkages.

Given these considerations, the observation that
intrinsic shrinkages found in the model when all the
C—S—H was made a shrinking phase were less the
experimental measurements strengthens the argument
that not all the C—S—H actively participates in the
shrinkage. If all the C—S—H actively participates in the
shrinkage, one would then expect to find the model
data were greater than the experimental data and not
less. Making all the C—S—H a shrinking phase gives
too much shrinkage for a given assigned intrinsic
shrinkage, again implying that not all the C—S—H
actively shrinks. While the agreement is certainly not
perfect and, given the number of assumptions which
have been made, one would not expect it to be, the
trend of the data in Fig. 9 does suggest that it is only
the volume of C—S—H measured by nitrogen surface
area, which is defined to be LD C—S—H in this paper,
that controls the shrinkage of cement-based materials,
especially at lower relative humidities. This may be
a result of compositional differences, or a reflection of
the topology of the LD C—S—H and HD C—S—H sur-
rounding a cement grain, or a combination of both
effects.

5. Summary
This paper has reported initial results of shrinkage at
the micrometre level in cement paste and mortars.
A new image analysis technique was used to measure
strain in situ within an environmental scanning elec-
tron microscope. Although these results can only be
considered preliminary, they provide insight into
microstructural changes that occur upon drying of
cement-based materials.



Observations have confirmed that strains at the
scale of several hundreds of micrometres have similar
trends to the strains measured on larger specimens.
The specimens are small enough to preclude differen-
tial shrinkage due to moisture gradients. Shrinkage at
this scale can be considered real shrinkage as defined
by Wittmann [12]. Shrinkage is greatest for young
specimens with high w/c ratios. High temperature
curing decreases shrinkage, even at equivalent degrees
of hydration. These result suggest that C—S—H ages as
the reaction proceeds and grows stronger, making it
more resistant to shrinkage. Intermediate relative hu-
midity shrinkage mechanisms, such as capillary stress,
are independent of w/c ratio and age, although the
shrinkage that they induce of course depends on the
elastic moduli, pore size and porosity of the cement
paste, which are functions of these variables.

Values of shrinkage across a distance of hundreds of
micrometres are significantly smaller than shrinkage
of an individual, nearly unrestrained particle of
C—S—H. The value for unrestrained shrinkage may be
used for modelling the real shrinkage. Results from
model and experiment agree reasonably well when
values for unrestrained shrinkage (i.e., particle shrink-
age) measured in experiment are used in the model
and when the volume of the shrinking phase is only
a subset of the total C—S—H in the system. The volume
of this sub-phase is determined by the Jennings—
Tennis [27, 28] model that rationalizes nitrogen
surface area observations, dividing C—S—H into low-
and high-density products.
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